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Introduction

Compared dq-Decoupling Techniques
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MICC - 

Manipulated Input 

Cross-CouplingMID - Manipulated Input Decoupling

DCCSFb - Decoupling Cross-Coupling State Feedback

DID – Disturbance Input Decoupling

Control Structure
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• This paper compares the quasi-continuous dq-decoupling techniques to various discrete modeling

approaches for Voltage Oriented Control (VOC)

• To analyze the different techniques, this paper provides both Frequency Response Functions (FRFs)  

for Command Tracking (CT) and Dynamic Stiffnes (DS), and time domain tests

• Two Voltage Source Inverter (VSI) topologies have been used:

1. Small-Scale Laboratory HVDC-MMC 2. Industrial Converter of a 3 MW Wind Turbine Generator

This paper was made within the framework of the research project Netz-Stabil

and financed by the European Social Fund (ESF/14-BM-A55-0015/16). This

paper is part of the qualification program Promotion of Young Scientists in

Excellent Research Associations - Excellence Research Programme of the

State of Mecklenburg-Western Pomerania.

Proposed discrete-time complex vector synchronous frame PI current regulator

with discrete DCCSFb and DID (red), MICC (blue), and MID (yellow).

Discrete State Block Diagram of the RL-plant of a VSI with

MICC (blue) and MID (yellow) and full DSFb (red).

Discrete complex vector synchronous frame PI current

regulator obtained via direct modeling (Briz, et.al, 2000).

Discrete-Time PI controller with DID and continuous DCCSFb

approach in blue.

• Four different dq-decoupling techniques are presented and compared during dynamic events:

1. Discrete CCVC 2. Quasi-Continuous DCCSFb 3. Discrete DCCSFb w/ MID 4. Full DSFb
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Delay Compensation and Analysis of Different Decoupling Techniques (State-Feedback-based)

Conclusion

Determination of Required InductanceDetermination of Required InductanceDetermination of Required InductanceDynamic Analysis of the Control Techniques
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  Frequency in Hz  Frequency in Hz  Frequency in Hz 

  (a)  (b)  (c) 

 ---:  est = 3Lest = 1.5L, Rest = 0.5R), e = 2500 rad/s ─: est = ; e = 2500 rad/s 

 ---: est = 3Lest = 1.5L, Rest = 0.5R), e = 250 rad/s ─: est = ; e = 2 rad/s 
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Discrete Luenberger Style Observer

Feed-Forward

MID Manipulated Input 

Decoupling

MICC Manipulated Input 

Cross-Coupling

DCCSFb Decoupling Cross-

Coupling State Feedback

DLSO Discrete Luenberger Style 

Observer – for delay 

compensation

X estimated parameter /

estimated states
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  Time in s  Time in s 

  ---:  w/o MID & DCCSFb ---: w/ discrete MID & full DSFb (exp.) w/o delay comp.

 ---: continuous DCCSFb (L) ---: w/ discrete MID & DCCSFb (trig.) w/o delay comp.
 ---: w/ discrete MID & full DSFb (exp.) & delay comp. (DLSO – see Fig.14)   
 ---: w/ discrete MID & DCCSFb (trig.) & delay comp. (DLSO – see Fig.14)   
  △ :  iq(t);        :     id(t);  Left:     fsw = 3 kHz, Ts/= 0.13;  Right:     fsw = 1 kHz, Ts/= 0.39 
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     Time in ms  Time in ms  Time in ms 

  (a)  (b)   (c) 

          ---: vqref(t)                 ─: iq(t) 

 

CT FRFs for 2kHz switching frequency, 500Hz bandwidth - (a) discrete CVC,

(b)xw/xcontinuousxDCCSFb, (c) w/ discrete DCCSFb and MID.

DS FRFs for 2 kHz switching frequency, 500Hz bandwidth - (a) discrete CVC,

(b)xw/xcontinuousxDCCSFb, (c) w/ discrete DCCSFb and MID.

Response in q-axis current during a simultaneous step command on q- and d-axis

current of the studied control topologies @ e = 2500 rad/s, fsw = 2 kHz and est = 3
(Lest = 1.5L, Rest = 0.5R); (a) CVC, (b) discrete DCCSFb w/ MID, (c) discrete full

DSFb w/ MID.

Control technique with full DSFb; (a) control structure, (b) CT, (c) DS @ 2 kHz

switching frequency, 500 Hz bandwidth.

Open-loop step response of various MID & DCCSFb techniques with parameter

estimation error for a 3 MW two-level inverter with 1Ts input delay. est = 1.5x
(Lestx=x1.2L, Rest = 0.8xR) Step command: vq,ref(t) = 0V, vd,ref(t) = 50V, e = 250xrad/s,

w/ delayed parameters D1-D4.

• Discrete approaches show superior command tracking and disturbance rejection properties

• The discrete techniques show different behavior regarding robustness

• The advantages of discrete approaches are more pronounced at lower switching frequencies

• At low switching frequencies (depends on ratio of Ts and ), the advantages of discrete modeling

become very apparent, especially at high synchronous speed (method 2 is unstable for some o.p.)

• The examined discrete decoupling techniques differ in robustness attributes

• Discrete approaches provide enhanced decoupling properties compared to quasi-continuous (2)

• Technique (1) – high robustness, but can get oscillatory at high output frequencies

• Technique (3) – overall well-behaved. Medium sensitivity regarding delay and load estimation

• Technique (4) – well-behaved. Low parameter sensitivity regarding load but very sensitive to delay
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Discrete plant model with one period input delay with delay compensation using a Discrete

Luenberger Style Observer (DLSO).

3 kHz 1 kHz

Output Frequency Parameter Estimation Error


