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Introduction

* This paper compares the quasi-continuous dg-decoupling techniques to various discrete modeling
approaches for Joltage Oriented Control (VOC)

* To analyze the different techniques, this paper provides both Frequency Response Functions (FRFs)
tfor Command Tracking (CT) and Dynamic Stiffnes (DS), and time domain tests

* Two Voltage Source Inverter (VSI) topologies have been used:
1. Small-Scale Laboratory HVDC-MMC 2. Industrial Converter of a 3 MW Wind Turbine Generator
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Discrete complex vector synchronous frame PI current Proposed discrete-time complex vector synchronous frame PI current regulator
regulator obtained via direct modeling (Briz, et.al, 2000).  with discrete DCCSFb and DID (red), MICC (blue), and MID (yellow).
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Discrete-Time PI controller with DID and continuous DCCSFb Discrete State Block Diagram of the RL-plant of a VSI with
approach in blue. MICC (blue) and MID (yellow) and full DSFb (red).

Four different dg-decoupling techniques are presented and compared during dynamic events:
1. Discrete CCVC 2. Quasi-Continuous DCCSFb 3. Discrete DCCSFb w/ MID 4. Full DSFb
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Dynamic Analysis of the Control Techniques
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CT FRFs for 2kHz switching frequency, 500Hz bandwidth - (a) discrete CVC, DS FRFs for 2 kHz switching frequency, 500Hz bandwidth - (a) discrete CVC,
(b) w/ continuous DCCSFb, (¢) w/ discrete DCCSFb and MID. (b) w/ continuous DCCSFb, (¢) w/ discrete DCCSFb and MID.

Edq(2)

< 12 < 103 30 30 30
. MID DID 2 . S 1:\\ BEE , _ /\
iy T, %k 1 i S | T T WAL
P A = D= RPN < 2 1 ) 20\ 3 )i 4 A
i ~ 08 \ = 102 - nE : T . TNV 20 ; R
Full DSFb _ %@ 06— \\ % /-/\\ e /i . K// ﬁ v VY . Y4 F \// v VY
A e I8/T . R > | : :
R g OAQI-/) & % 10"/ | EE = = AADANSN NDAAKA 1O.MJMMW
N 0.2 NI e 0
=
E 0L — . ; K 40 \}/ , ; 0) 1 2 3 4 OO 1 2 3 4 OO 1 2 3 4
I44() 10 . 107 o 10 10 : 10° 0 10 Time in ms Time 1n ms Time 1n ms
requency in Hz requency in Hz (a) (b) (©)
(a) (b) (c)
——: Test = 37 (Lest = 1.5L, Regt = 0.5R), we = 21500rad/s —: Test = T, We = 21500rad/s === Vgref(?) — ig(?)
-t Tost = 37 (Lest = 1.5L, Rost = 0.5R), we = 21501ad/s — Tost = T, We = 2150Tad/s Response 1n g-axis current during a simultaneous step command on ¢- and d-axis

current of the studied control topologies @ @, = 21500 rad/s, f_,, =2 kHz and 7,

=37
: : est
Control technique with full DSFb; (a) control structure, (b) CT, (¢) DS @ 2 kHz (Loy; = 1.5L, R,y = 0.5R); (a) CVC, (b) discrete DCCSFb w/ MID, (c) discrete full

switching frequency, 500 Hz bandwidth. DSFb w/ MID.

* Discrete approaches show superior command tracking and disturbance rejection properties
* The discrete techniques show different behavior regarding robustness
* The advantages of discrete approaches are more pronounced at lower switching frequencies

Delay Compensation and Analysis of Ditferent Decoupling Techniques (State-Feedback-based)
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estimated states Discrete Luenberger Style Observer Open-loop step response of various MID & DCCSFb techniques with parameter
estimation error for a 3 MW two-level inverter with 175 input delay. 7, = 1.57
Discrete plant model with one period input delay with delay compensation using a Discrete (Logt = 1.2L, Rt = 0.8 R) Step command: Vq,ref(t) =0V, vy e =50V, @, = 2150 rad/s,
Luenberger Style Observer (DLSO). w/ delayed parameters D -D,.

* Discrete approaches provide enhanced decoupling properties compared to quasi-continuous (2)

* Technique (1) — high robustness, but can get oscillatory at high output frequencies

* Technique (3) — overall well-behaved. Medium sensitivity regarding delay and load estimation

* Technique (4) — well-behaved. Low parameter sensitivity regarding load but very sensitive to delay

Conclusion

* At low switching frequencies (depends on ratio of 7, and 7), the advantages of discrete modeling
become very apparent, especially at high synchronous speed (method 2 1s unstable for some o.p.)
* The examined discrete decoupling techniques differ in robustness attributes
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